Anomaly detection through information sharing under different topologies
نویسندگان
چکیده
Early detection of traffic anomalies in networks increases the probability of effective intervention/mitigation actions, thereby improving the stability of system function. Centralized methods of anomaly detection are subject to inherent constraints: (1) they create a communication burden on the system, (2) they impose a delay in detection while information is being gathered, and (3) they require some trust and/or sharing of traffic information patterns. On the other hand, truly parallel, distributed methods are fast and private but can observe only local information. These methods can easily fail to see the “big picture” as they focus on only one thread in a tapestry. A recently proposed algorithm, Distributed Intrusion/Anomaly Monitoring for Nonparametric Detection (DIAMoND), addressed these problems by using parallel surveillance that included dynamic detection thresholds. These thresholds were functions of nonparametric information shared among network neighbors. Here, we explore the influence of network topology and patterns in normal traffic flow on the performance of the DIAMoND algorithm. We contrast performance to a truly parallel, independent surveillance system. We show that incorporation of nonparametric data improves anomaly detection capabilities in most cases, without incurring the practical problems of fully parallel network surveillance.
منابع مشابه
Coordination of Information Sharing and Cooperative Advertising in a Decentralized Supply Chain with Competing Retailers Considering Free Riding Behavior
This paper studies a decentralized supply chain in which a manufacturer sells a common generic product through two traditional and online retailers under free riding market. We assume that the traditional retailer provides the value added services but the online retailer does not. Factors such as retail prices, local advertising of the retailers, global advertising of the manufacturer and servi...
متن کاملCyber situational awareness through network anomaly detection: state of the art and new approaches
With a major change in the attack landscape, away from well known attack vectors towards unique and highly tailored attacks, limitations of common ruleand signature-based security systems become more and more obvious. Novel security mechanisms can provide the means to extend existing solutions in order to provide a more sophisticated security approach. As critical infrastructures get increasing...
متن کاملSeparation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image
The application of anomaly detection has been given a special place among the different processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملA Survey of Anomaly Detection Approaches in Internet of Things
Internet of Things is an ever-growing network of heterogeneous and constraint nodes which are connected to each other and the Internet. Security plays an important role in such networks. Experience has proved that encryption and authentication are not enough for the security of networks and an Intrusion Detection System is required to detect and to prevent attacks from malicious nodes. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Information Security
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017